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The motion of ions in a trapped-ion frequency standard affects the stability of

the standard. In order to study the motion and structures of large ion clouds in a

radio-frequency (rf) trap, a computer simulation of the system that incorporates the
effect of thermal excitation of the ions has been developed. Results are presented

from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in

the low-temperature regime.

I. Introduction

The development of the trapped-ion frequency stan-

dard at the Jet Propulsion Laboratory (JPL) is motivated

by the potential of this device to achieve stability exceed-

ing one part in 1017 . The basis of the potential for this
remarkable stability performance is the isolation of the

trapped ions from perturbing influences that diminish sta-

bility over averaging intervals greater than several hundred
seconds. In conventional frequency standards such as hy-

drogen masers, these effects include the interaction of the

atoms with confining walls and phase-destructive collisions

of atoms of the same species that are in different energy
states.

The confinement of ions in rf traps (the type employed

in the JPL trapped-ion standard) is accomplished by ex-

posing the ions to an oscillating field, resulting in a force
that acts to direct the ions toward the center of the trap

and away from the trap electrodes. This electromagnetic

containment is dynamic in nature, as will be detailed be-

low. Therefore, since a large source of frequency offset is

the second-order Doppler or relativistic time-dilation effect
due to the motion of the ions, it is appropriate to study

the dynamic effects in the rf trap system.

Ions, of course, do not lend themselves to easy visual

observation, so the dynamics of trapped particles are often

indirectly studied through the observation of the motion of
micron-sized particles in a similar trap [1] or by computer

simulations of the confining fields and Coulomb interac-

tions experienced by ions in a trap. The introduction of

computer sinmlations to the field of trapped-ion dynamics

brings with it a new set of results, which are not from a

laboratory experiment but from "computational" studies
of a model. Naturally, if the model is an accurate represen-

tation of the real system at hand, a computer simulation

using that model should duplicate behavior seen in experi-

rnents and that predicted by an accurate theory.

This article presents a study that uses computer simu-
lation to examine the motion of ions confined in rf traps

to determine possible influences on the frequency stability.
While similar studies have been carried out for tile case of
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afewionsconfinedin rf traps,thepresentworkincludes
resultsfor clusterswith asmanyas512ions.Thus,this
studyis amorerealisticmodelfor actualfrequencystan-
dards,wherethetypicalnumberof confinedionsranges
from10ato 106.

Afterabriefreviewof trapped-iontheoryinSectionII
andadescriptionofthesimulationinSectionIII, thecom-
putationalresultsarecomparedwith theoryinSectionIV
andwithexperimentin SectionV. In SectionVI, theJPL
simulationis comparedto the resultsfromtrapped-ion
simulationscarriedoutbyothergroups,andSectionVII
outlinestheplansfor usingthissimulationto fimherin-
vestigatetrapped-iondynamics.

II. Trapping Theory

The detailed theory of rf ion traps has been treated

previously [2,3,4]. An outline of the theory is presented
here to support the discussion of the computer model.

A Paul-type rf trap consists of three hyperbolic elec-

trodes, as shown in Figs. l(a) and (b). _ Typically, these

electrodes are arranged so that the radius of the trap cavity

v0 is V_ times the height of the cavity. An ac voltage with

angular frequency ft is applied in series with a de voltage

between the ring electrode and the two endcap electrodes.

Another type of trap, known as the Penning or dc trap,
is described later in this article. Since a full development

is not necessary in this discussion, the reader is referred

to [2] and [3]. The Penning trap uses the same electrode

configuration as the Paul trap, but the rf portion of the
electric field is replaced by a static magnetic field in the

z-direction. Hence, neither of the fields in this trap is

time-varying.

Applying the Paul trap potentials produces a potential

inside the trap of the form

+ _
z) = 2,,g (1)

The electric field components are obtained by differen-

tiating Eq. (1) as

( Vvc VAC os(r t) )n = - _--r-.+ =, (,.- 2z) (2)
\ ro r6

a The linear rf trap described in [8] employs fields sinfilar to the Patti

trap, but consists of four cylindrical rods rather than the hyperbolic

electrodes.

The trapping effect of this field configuration can be
understood as follows. A node exists at the center of the

trap (r = z = 0) where the electric field is zero: thus, there
is no force on a charged particle located there. Depending

on the sign of the rf term, at any given time the field is

pointing toward the node in one direction and away from
the node in the other. It can also be seen in Eq. (2) that the

field magnitude increases with increasing distance from the
node. This behavior of the field in the interior of the trap

leads to a net force that, when averaged over one rf cycle,

is directed toward the node [1]. This "ponderomotive" [5]

force is what draws charged particles toward the node,

trapping them inside the electrodes.

The equations of motion of a single ion subject to the
force due to the electric field in Eq. (2) can be expressed

using the two dimensionless constants

4eVDc 2eVAc
a -- .,., q -- -- .,., (3)

rag- r 6 m_- r_

to represent the trapping parameters, and a dimensionless

time parameter

9
.- = -t (4)
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In this fornmlation, the equations of motion become forms

of the Mathieu differential equation

d21 •

dr2 = -(a - 2qcos(2r))r (5)

for either radial dimension (. or 9), and

d 2 2

dr--l. = 2 (a - 2q cos(2r)) z (6)

for the axial dimension z. In the expressions for a and
q, e and m denote the charge and mass of the contained

particle, respectively.

The solutions of Eqs. (5) and (6) reveal that an ion

influenced by the fields of a Paul trap undergoes a fast
rf motion with the same frequency f_ as the driving ac

potential, and a slow "secular" oscillation, which in the

one-dimensional case carries it back and forth through the

trap node.

When more than one ion of the same charge-to-mass
ratio is present in the trap, each ion has its own equation

of motion, consisting of a trapping term as above and a

11



Coulombtermcontaining the electrostatic interaction of
all other ions. The motion in Cartesian coordinates x, y,

and z of singly ionized atoms of mass m is described by

the set of differential equations

d2*' - (a - 2qcos(2_))x,
e 2

• _omm_ (*i _*,) (7)
j riJ

d_'v' - (__ 2qcos(>-))y,
dr 2

e2 (y? - y;)

3

and

e= (_i - zi)
d_z---£dr_ = 2(a- 2qcos(2r))zi 7reo_Q2 E. _ (9)

J

tlere, xi, Yi, and zi are tile Cartesian coordinates of tile

ith ion, and rij signifies tile distance between ions i and j.

III. Model for the Simulation of Trapped-ion
Dynamics

Equations (7), (8), and (9) completely describe the

trapping and interparticle Coulomb effects on each ion in

a cloud of arbitrary size. Because the interest here is ttle

low-temperature behavior of collections of ions, a damp-

ing that is proportional to particle velocity is introduced
in order to cool the ions. This adds a final term to ttle

differential equations

d2xi

dr 2
- (_ - 2qcos(2T))_,

£
-¢o-,,___ (_i - _,) 2v d_, (10)

J ra. _2 dr

d_Y' (a - 2,_cos(2_))
---- -- Yi

e2 Yi ) 2D dyi (11)_o,,_- _-" (YJ_ _ d_
1 rij

and

d_zi 2(a - 2qcos(2r))zi

e 2 X-" (zj - zi) 27) dzi
(12)

7T_0i--'_2 A_,
j ra1 f2 dr

where/) is a coefficient of the damping. Once again, the

factor of 2/f2 in the third term of each of these equations

appears because of the change of variable to dimensionless

time r. The inverse of the damping coefficient 1/D is

known as the damping time rd of a system with damping
D.

In a manner similar to the case of particles undergoing

Brownian motion, a random walk in velocity is introduced,

which simulates the process that sustains ion motion in

the presence of damping, thus preventing the temperature

from reaching zero. The growth in kinetic energy stem-

ming from this random-walk step in velocity is balanced

by the velocity damping introduced in the above equations
of motion. This balance determines the size of the random-

walk step that yields the desired final temperature.

The signature of a random-walk progression is that the

mean square of the quantity in question increases linearly

with the number of steps N" in the walk [6]. ttere, this
quantity will be a velocity in the space of the dimensionless

parameter r, denoted as

dx
V. I- _ q

dr

Thus, the magnitude of tile random-walk step in tile di-

mensionless time space Avr must obey

< Vr2 > = .J_(,-_Vr) 2 (13)

or in terms of the usual velocity v,

< \dr/ > = -_ < \ dt / > (14)

4
=_--_, < v 2 > = _r(At,_) 2 (15)

Introducing a short dimensionless time interval h be-

tween random-walk steps so the A/" steps of length h rep-

resent a span of dinaensionless time r,

4 v_ _._ = (16)_--_ < >= (At'_)_ r(av)2h

and, llence_

d< v 2 >) - _2--_2(iv)' (17)
dr ,_ 4 h
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where rw suggests that this is due to the random walk.
This is no more than a restatement of the fact that the

mean square of the velocity grows linearly in time in the

random walk. The growth of < v _ > due to the random

walk is balanced by the damping of velocity per the damp-

ing terms in Eqs. (10), (11), and (12). The term due to

damping becomes

d(v_) - 4Vv_ (18)
dr

For this damping term, it can be shown that when the

interval over which v 2 is averaged is small in comparison

tord/2,<v _ >=v s. Then

d7 damp damp

4
= -6l) < v z > (19)

Setting the sum of the two terms to zero to balance the
effects yields

dr -- dr rw + dr damp

f_ (Av,) 2 4 v_
4 h -_:D < > = 0 (20)

To get a random direction of the change in velocity,
a separate random walk is taken in each of the Cartesian

directions x, y, and z. Therefore, the Av_ in Eq. (20) is the
size of the step in any one of these dimensions, and v 2 is the

velocity squared in any one dimension. The temperature
T of the system is introduced by use of the equipartition

of energy

l kBT = lm< v 2 >

Making this substitution for < v 2 > and solving for

Avr in Eq. (20) yields the magnitude of the random-walk

step in one dimension:

/16DhkBT
Av_ = V _ (21)

The sign of this velocity boost is determined by using a
random-number generator that chooses each sign 50 per-
cent of the time.

The approach to simulating a system described by these

equations is obviously to determine the time evolution of

the position-momentum states of the particles. The ne-

cessity of a constant small time step h in the random-walk

formulation of temperature creates an ideal situation in

which to use a fourth-order Runge-Kutta integration, with

a constant time step, of the differential Eqs. (10), (11), and

(12). The time between the random-walk steps h will also

be the time step of the integration routine, so that the ran-

dom walk can be executed at each integration step. The

only requirement on the size of h is that it is small enough
so that the errors (of the order h5) are "small enough." In

the case that the Runge-Kutta integration is calculating a

specific numerical solution, one checks the solution by cut-

ting h in half and checking that the two solutions agree [7].

In the case described here, where the integration is pro-

ducing the motion of the ions in time, the appropriateness
of the size of h can be checked by determining that halving

h does not produce any noticeable increase in smoothness

of the motion. In the cases examined, it was found that an

integration step of 1/20 the period of the rf-driven motion,

h = 27r/20_2, gives the desired precision.

The integration will give the three components of po-

sition and velocity for each particle at each step of the

integration. This position-momentum state contains all

the information about the system; other descriptions of

the system are just obtained from the position-momentum
state as appropriate. For instance, to obtain a kinetic en-

ergy for the entire cloud at any given time, the velocities

of each particle are used to compute rnv2/2, and summing

this quantity over each particle in the cloud gives an in-

stantaneous total kinetic energy.

IV. Comparison of Results of the Model
With Theory

Verification that the modeling of trapping voltages and

Coulomb interactions is an accurate representation of a

system of ions in a trap can be performed by checking

the behavior of ions in situations readily calculable from

the equations of motion. For instance, it was previously
mentioned that an ion in the rf field oscillates with a slow

secular motion in addition to the fast driven motion (the

"micromotion"). The secular frequencies are given by [8]
as

2 c2V2c eVDc

_ 2,n_a=,._ + m,._, (22)

an d
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2e2V_c 2eVDc (23)
- m,.o2

These quantities are easily calculated for any combina-
tion of the trapping voltages. In particular, if either VAC

or VDC is zero, the expressions for secular frequencies re-

duce to a single term. Another simple case for which this

happens is the so-called "spherical" case often employed in
2trap operation, in which w_ and w, are chosen to be equal

by setting

ey o (24)
VDcoph)- 2m_2r2 °

which gives

2 2 -_. e2 V2C

°+r= _z m2_2r04 (25)

To isolate the trapping and Coulomb forces, the pa-

rameters /) and T in Eqs. (10), (11), (12), and (21) are

simply set to zero. Then a simulation of a single ion in

tile trap clearly shows the micromotion (if VAC i£ 0) and

the slower secular oscillation, as in Fig. 2. The period of
the oscillation can then be found by measuring the time

between three successive zero-crossings of the position ver-

sus time graph. Since the position data exist only at each

integration step h, the location in time of a zero-crossing

is determined only to the accuracy of +½h.

The values obtained from the simulation of the peri-

ods T corresponding to these frequencies and the corre-

sponding values from the above theory are summarized in

Table 1. The agreement of the periods and the smooth si-

nusoidal motion seen in Fig. 2 indicate that the integration
of the trapping and Coulomb terms is working properly.

If the temperature parameter accurately models ordi-

nary temperature in kelvins, then, as previously suggested,

the particles should have a thermal energy of lkl_T per de-
gree of freedom. This can be checked in the simulation by

computing the mean-square velocity of the guiding center

of motion, that is, a < v _ > that does not include the

driven micromotion of the particles. This is done by com-

puting the motion in time of tile average position of each

particle over a micromotion period, and then averaging the
square of this quantity over all ions and over a satisfactory

span of time.

For various degrees of damping and number of ions

Nio,_s, tile computational value of v 2 is in agreement with

the theoretical value given by the equipartition of energy,

as summarized in Table 2 for T = 0.005 K and m = 137

atomic mass unit (amu). The uncertainties reported are
computed as the standard deviation in the N measure-

ments.

The theoretical value is within the uncertainty range of

each of the computational values. This indicates that a

random walk in velocity space is a valid model of temper-
ature.

V. Comparison of the Results of the Model
With Experiments

Another way to examine the validity of using this simu-

lation is to compare the ion dynamics with results observed
by experimenters who have trapped charged micron-sized

particles in an rf trap. Using a suitable magnification

method, these particles can be observed visually or pho-

tographed. Thirty-two particles trapped with an rf field

only (VDC = 0) have been seen to have a "crystalline"

state where the particles arrange themselves in three con-

centric circles containing 4, 14, and 14 particles [4]. This

photograph is shown in Fig. 3(a); the appearance of each
particle as a line is due to the fast micromotion. Simulat-

ing this situation gives a similar "photograph" when the

x-y positions of all particles are plotted over one period of

the micromotion, Fig. 3(b).

When VDC ¢ 0 and there are many (,_100) charged
particles in a dust trap, experimenters have seen a char-

acteristic picture in which the large micromotion of the

particles farthest away from the node maps out the elec-

tric field pattern of the trap, as shown in Fig. 4(a) [4]. In
a simulation of 128 particles, the plot of their motions in

three dimensions yields a similar picture, Fig. 4(b).

Experiments in which small numbers of ions in an

rf trap are caused to visibly fluoresce have been carried

out [9]. These experiments indicate that with VDC = O, a
pair of ions has a stable configuration in which the pair is

situated symmetrically about the node in the z = 0 plane,

Fig. 5(a). With VDC > VDc(,ph), however, the z direction
is preferred, and the most stable configuration is with the

pair centered about the node in the r = 0 plane, Fig. 5(b).
These results may be understood from the use of a har-

monic pseudopotential that is derived through the force

on a trapped particle averaged over one rf cycle [2]: in
the first case, with VDC = 0, the restoring force in the

pseudopotential well is four times as strong in the r di-
rection as in the z direction, tIowever, in the case that

VDC > VDc(,ph), the force is stronger in the axial (z) di-
rection.
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Duplicating these situations in the simulation produces
the same most stable configuration in each case. Further-

more, the nature of the potential well is evident in noting

the progress of the system toward this configuration when
the initial conditions are far from it. For instance, the ions

may be started on the z = 0 plane, with the voltages set in

the VDC > VDc(sph) case. Note that by Eq. (2), there is no
trapping force in the z direction on a particle situated at

z = 0. Hence, the trapping force alone would never bring

the particles out of the z = 0 plane no matter how deep
the well in the z direction! In the actual system, of course,

collisions with the atoms of the buffer gas will knock the

ions off the plane, allowing the force to have nonzero com-

ponents in both directions. The ions can then drop into
the well.

It is evident that in a computer model, some noise that

can mix the r and z directions in this way must be in-

cluded [10]; in the simulation described here, the random
walk in velocity provides this noise. Starting the ions cen-
tered about the node on the z = 0 plane produces motion

as shown in Fig. 6, which is obtained by plotting the po-
sitions of the two ions when they are near the maxima of

their secular oscillation for several secular periods. Ini-

tially the ions oscillate only in the r direction; then the
random-walk step moves the ions off the z = 0 plane.

Note the symmetry of the system: the ions stay oppo-

site one another as if connected by a spring, as suggested

by the dashed lines between the pairs of ions. Now that
the trapping force has both r and z components, the ions

can move toward their most stable configuration along the

z axis. They "overshoot" the z axis due to the angular mo-

mentum they have from being drawn toward the axis, and

then return, precessing about the axis in this manner (sug-

gested by the solid arrows) until the motion is damped out
and the ions sit quite stably along the axis with only slight

vibrations around their equilibrium positions (Fig. 7).

VI. Comparison to Other Simulations

Although there are no other large-scale simulations of
rf traps, simulations [12] of large numbers of ions in a

Penning trap have been conducted. These are based on the

notion that, disregarding the motion due to the confining

fields, confined ions are regarded as thermal particles with
a mutual Coulomb repulsion in either type of trap. This

repulsion keeps the ions quite far apart from one another,

similar to states observed in a one-component plasma [11].

A useful way to describe the energy state of a plasma is
by its coupling constant F, which is the ratio of Coulomb

energy to thermal kinetic energy, or e2/akBT. Here a is

an average distance between the ions, kB is the Boltzmann
constant, and T is temperature.

If F is << 1, the thermal energy is much greater than

the Coulomb energy, and the ions may be expected to

move quite freely as thermal particles without much regard
to the comparatively weaker Coulomb force. However, if

F >> 1, the Coulomb energy exceeds the kinetic energy,

and less thermal motion would be expected in the ion sys-

tem. The theory predicts a solid-like state with very little

thermal motion for F > 180, and a liquid-like state with an

intermediate level of thermal diffusion for 2 < F < 180 [5].

The Penning trap simulations have shown that in tile

spherical case, when the coupling F between the ions is

large, the ions form into concentric spherical shells cen-
tered on the trap node. Qualitative agreement, with the

exception in some cases of the presence of cylindrical shells

rather than spheroids, is seen in actual experiments on

many Penning-trapped ions, which can be visually ob-

served by causing the ions to fluoresce [13].

The simulation described here has also shown this be-

havior for ion clouds of up to 512 ions. This is shown in

Figs. 8(a), (b), and (c) for several cloud sizes by plotting

the positions of the ions in two dimensions as Izl versus

V/_ + y2. This picture has the effect of sweeping around

all ¢ (the longitudinal angle in spherical coordinates) and

folding into one quadrant. Using this representation, the

adding of additional shells with increasing numbers of ions
due to their Coulomb repulsion is clear: 128 ions arrange

themselves in three shells, 256 ions in four shells, and for

512 ions a fifth shell is necessary. By taking the "photo-

graph" during the crystallization process, information is
gained on the process itself. It is seen in Fig. 9 that in this

512-ion case, the ion density begins to build up on what

will be the fifth (outer) and the fourth shells in Fig. 8(b)

while the ions are still mixing with respect to one another.

It has been reported that for very large F, the ions on
the outer shell of a large ion cloud will have very little

thermal motion, in accordance with the strongly coupled
plasma theory. Furthermore, these ions arrange them-

selves into a two-dimensional hexagonal lattice on the sur-

face of the shell [12]. The simulation described here also

produces this result in both 128- and 256-ion clouds. The

lattice itself can be examined in a polar plot (0 versus ¢) as
in Fig. lO(a), or in a "time-lapse" three-dimensional plot

of ions on the hemisphere, Fig. lO(b).

The lattice can also be examined in a more quantitative

fashion by considering the spatial correlation of the ions on

the outer shell. The coordination number function C(s)
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describestheaveragenumberofionswithinadistances of
one ion, and the correlation function e(s) is given in terms

of C(s) as [12]

' 2 -s (s)ds= C(s) (26)

A regular two-dimensional hexagonal lattice has six

nearest neighbors to any one point, and eighteen next-
nearest neighbors, so the function C(s) when plotted

against s should show horizontal shoulders at C(s) = 6

and C(s) = 18. The correlation function can be obtained

from C(s) by Eq. (26).

For the 128-ion cloud in Figs. 10(a)-10(d), which is at

F = 556, the highly regular hexagonal lattice is evident
in the polar plot and the three-dimensional plot, and sup-

ported by the shape of C(s), Fig. 10(c). The correlation

function itself, c(s), has three smooth, well-defined peaks,

Fig. 10(d), which also indicates a large degree of order.

At P = 139, some changes in the lattice are evident in

the three-dimensional plot (Fig. 11). This time-lapse plot

shows that over a length of time, the ions wander quite a
bit more from their positions in the hexagonal lattice, but

there is still a fair degree of order and there is not much

exchanging of positions between ions.

When F is lowered to 65, the time-lapse plot shows that

the ions are wandering quite randomly over the surface of

the sphere, Fig. 12(a). Indeed, the second shoulder of C(s)
has been virtually wiped out, Fig. 12(b), indicating that

order exists only on the scale of the first unit cell. The plot

of c(s) has similarly degraded, Fig. 12(c). The simulations

that have been done on Penning trap systems also show
this effect, in which the ions are crystallized into shells but

diffuse freely over the surface of the shell, for low (but > 1)

values of F [12].

VII. Conclusions

It has been shown that this model of the Paul trap

system gives results that agree with trapping theory, vi-

sual observations of trapped particles, and other computer

simulations of trapped charged particles. Armed with this

model, questions that are important to the trapped-ion fre-

quency standard can now be examined, such as the effect

of "rf heating," in which a large ion cloud may gain extra

energy from the effects of the trapping rf field [14]. Clearly,
the normal modes of oscillation of a system of N ions in

this rf quadrupole field have not been solved analytically;

the simulation may be an excellent way to understand the

oscillations of such a large system. Also, by simply revis-

ing the differential equations in the computer program, rf
simulations of other trap geometries (such as the linear ion

trap described in [8], which is now in use) can be done.

To the authors' knowledge, there have been no simu-
lations of ions in such a linear trap, and although ex-

periments have been done at JPL on the confinement of

micron-sized particles in a linear trap, they are not nearly

as detailed as the studies in [4], and little is known about

the crystalline structures that may form in a linear trap.
Therefore, it is indeed important to have confidence in the

integrity of the simulation by examining a system that has
been widely studied (the hyperbolic trap) before progress-

ing to less understood systems.
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Table 1. Comparison of secular oscillation periods

Computational Theoretical Computational Theoretical

VAC VDC Tr Tr T, T_

120 0 1048 4- 1 10,18.0 523 ::[: 1 524.0

O 40 211 -4- 1 210.9 149 -1- 1 1,19.1

120 VDC(sph ) 740 4- 1 7,11.0 740 4- 1 741.0

Note: Voltages axe reported in volts, and periods in integration steps, h.

Table 2. Comparison of thermal energies

Computational Theoretical
Nt on _, rd / r, v2 v2 N

128 9.77 0.30079 4- 0.01475 0.301231 2,1

128 26.6 0.27942 4- 0.02556 0.301231 26

256 4.9 0.29976 4- 0.00576 0.301231 19

Note: Tile value Td/Ts is a measure of tile relative amount of damping: the ratio of the daanping

time to the single-particle secular period.
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(b)

Fig. 1. A hyperbolic trap: (a) the three electrodes, consisting

of one ring electrode and two endcaps, and (b) the assembled

hyperbolic trap in cross section.
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Fig. 2. One-dimensional slngle-particle trajectory in a Paul trap,

showing the fast driven mlcromotion superimposed on the slower

secular motion.
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Fig. 3. Comparison of rf-trapped macropartlcles

with simulation: (a) photograph from [4] showing

the "crystalline" state of 32 particles, and (b) re-

suits from the simulation of 32 trapped particles.
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Fig. 4. Comparison of _100 d-trapped particles with simula-

tion: (a) photograph from [4] showing _100 particles outlining

the fields in the trap, and (b) results from the simulation of 128

rf-trapped particles.
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(a)

Y

VR=O

X

(b)

2 IONS

vR = 1.7o v

Fig. 5. Photograph from [9] showing two trapped

ions whose preferred configuration Is to be situ-

ated (a) symmetrically about the node in the radial

direction, and (b) symmetrically about the node in

the axial direction.

"_ / /11 \ \\

\1t / \ \\\

Z

Fig. 6. Simulation of a pair of ions whose preferred configuration

is to lie on the z-axis; when placed on a radial axis, they are drawn

toward the vertical and precess about the z-axis.

Z

Fig. 7. The system of Fig. 6, after

much ol the precessional motion has

damped out, sits stably along the
z-axis.

21



3.2
00(a)

2.8

2.4

Ill]

0.8-

0.4--

0

0.2

2.0

o

× 1.6

E

1.2

o

x
E

4.5
(b)

4.0-

3.5-

[]
3.0

2.5

2.0
D

1.5

1.0

0.5-

L I I

_ E6

0 o

L

0.6

_D

oo 0

o D o

rn 0
oo

I

0.5

D

o
[]

oOo(_ D

[] []

[]
[]

r7

o D

[] D

I k ID D J

1.0 1.4 1.8 2.2

r, m x 10 -5

I I I I I II

I

2.6

o 05
OO

o
Oq] o %0%

no O

[]
0 o

[] o _ [200

, }
rnl I I I _F

1.0 1.5 2.0 2.5 3.0

r, mxlO "5

no 0

O_O

[]

3.0

I I I I I I I I
(c)

_ 2.4-- [] 00 030 00]_ _ []

3.5 4.0 4.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r, m x 10 -5

Fig. 8. An r versus z plot of the positions of ions In a simulation: (a) 128 ions form three concentric spherical shells; (b) 256 ions form

lour spherical shells; and (c) 512 ions form live spherical shells.
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Fig. 9. An r versus z plot of a simulation of 512 ions during their

crystallization, showing the buildup of density where the fourth

and fifth shells are forming.
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Fig. 10. A 128-1on cloud: (a) polar (0 versus _) plot of ions on the outer shell at F ---- 556, showing the two-dimensional hexagonal

lattice that forms on the surface of the shell; (b) three-dimensional view of ions on the near hemisphere of the outer shell (the positions

on this "time-lapse" plot are sampled once per mlcromotion cycle); (c) the coordination number function C(s) of the ions in the system

of (a), showing shoulders at C(s) _ 6 and C(s) = 18, Indicating a hexagonal lattice; and (d) the correlation function c(s) of this system.

The three smooth, well-defined oscillations of this function indicate a high degree of order.
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Fig. 11. Time-lapse plot similar to Fig. lO(b),

showing the ouler hemisphere of a 128-ion
cloud at F ---- 139. More thermal motion is seen

here than in Fig. lO(b).
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Fig. 12. A 128-1on cloud at [` = 65: (a) time-lapse plot showing that the Ions diffuse about the spherical shell much more In this case

than at the higher values of [`; (b) coordination number function C(s) of the system of (a), showing that in comparison to Fig. 10(c)

the shoulder at C(s) _18 has disappeared, Indicating that at this lower [` order exists over length scales of a one-unit hexagonal cell

only; and (c) correlation function c(s) of this system. In comparison to the c(s) In Fig. 10(d), this one Is far noisier and lacks the third

oscillation, indicating less order In this low-[' system.
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